Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38138064

RESUMO

Three strains of thermophilic green sulfur bacteria (GSB) are known; all are from microbial mats in hot springs in Rotorua, New Zealand (NZ) and belong to the species Chlorobaculum tepidum. Here, we describe diverse populations of GSB inhabiting Travel Lodge Spring (TLS) (NZ) and hot springs ranging from 36.1 °C to 51.1 °C in the Republic of the Philippines (PHL) and Yellowstone National Park (YNP), Wyoming, USA. Using targeted amplification and restriction fragment length polymorphism analysis, GSB 16S rRNA sequences were detected in mats in TLS, one PHL site, and three regions of YNP. GSB enrichments from YNP and PHL mats contained small, green, nonmotile rods possessing chlorosomes, chlorobactene, and bacteriochlorophyll c. Partial 16S rRNA gene sequences from YNP, NZ, and PHL mats and enrichments from YNP and PHL samples formed distinct phylogenetic clades, suggesting geographic isolation, and were associated with samples differing in temperature and pH, suggesting adaptations to these parameters. Sequences from enrichments and corresponding mats formed clades that were sometimes distinct, increasing the diversity detected. Sequence differences, monophyly, distribution patterns, and evolutionary simulation modeling support our discovery of at least four new putative moderately thermophilic Chlorobaculum species that grew rapidly at 40 °C to 44 °C.

2.
Cancer Discov ; 13(6): 1408-1427, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892565

RESUMO

The BCL2 inhibitor venetoclax (VEN) in combination with azacitidine (5-AZA) is currently transforming acute myeloid leukemia (AML) therapy. However, there is a lack of clinically relevant biomarkers that predict response to 5-AZA/VEN. Here, we integrated transcriptomic, proteomic, functional, and clinical data to identify predictors of 5-AZA/VEN response. Although cultured monocytic AML cells displayed upfront resistance, monocytic differentiation was not clinically predictive in our patient cohort. We identified leukemic stem cells (LSC) as primary targets of 5-AZA/VEN whose elimination determined the therapy outcome. LSCs of 5-AZA/VEN-refractory patients displayed perturbed apoptotic dependencies. We developed and validated a flow cytometry-based "Mediators of apoptosis combinatorial score" (MAC-Score) linking the ratio of protein expression of BCL2, BCL-xL, and MCL1 in LSCs. MAC scoring predicts initial response with a positive predictive value of more than 97% associated with increased event-free survival. In summary, combinatorial levels of BCL2 family members in AML-LSCs are a key denominator of response, and MAC scoring reliably predicts patient response to 5-AZA/VEN. SIGNIFICANCE: Venetoclax/azacitidine treatment has become an alternative to standard chemotherapy for patients with AML. However, prediction of response to treatment is hampered by the lack of clinically useful biomarkers. Here, we present easy-to-implement MAC scoring in LSCs as a novel strategy to predict treatment response and facilitate clinical decision-making. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Células-Tronco/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
Chem Pharm Bull (Tokyo) ; 71(2): 154-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724978

RESUMO

Rhodopsins are transmembrane proteins with retinal chromophores that are involved in photo-energy conversion and photo-signal transduction in diverse organisms. In this study, we newly identified and characterized a rhodopsin from a thermophilic bacterium, Bellilinea sp. Recombinant Escherichia coli cells expressing the rhodopsin showed light-induced alkalization of the medium only in the presence of sodium ions (Na+), and the alkalization signal was enhanced by addition of a protonophore, indicating an outward Na+ pump function across the cellular membrane. Thus, we named the protein Bellilinea Na+-pumping rhodopsin, BeNaR. Of note, its Na+-pumping activity is significantly greater than that of the known Na+-pumping rhodopsin, KR2. We further characterized its photochemical properties as follows: (i) Visible spectroscopy and HPLC revealed that BeNaR has an absorption maximum at 524 nm with predominantly (>96%) the all-trans retinal conformer. (ii) Time-dependent thermal denaturation experiments revealed that BeNaR showed high thermal stability. (iii) The time-resolved flash-photolysis in the nanosecond to millisecond time domains revealed the presence of four kinetically distinctive photointermediates, K, L, M and O. (iv) Mutational analysis revealed that Asp101, which acts as a counterion, and Asp230 around the retinal were essential for the Na+-pumping activity. From the results, we propose a model for the outward Na+-pumping mechanism of BeNaR. The efficient Na+-pumping activity of BeNaR and its high stability make it a useful model both for ion transporters and optogenetics tools.


Assuntos
Rodopsina , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Transporte de Íons , Bactérias/metabolismo , Íons , Sódio/química , Sódio/metabolismo , Luz
4.
Nucleic Acids Res ; 51(D1): D1531-D1538, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36134710

RESUMO

We present MediaDive (https://mediadive.dsmz.de), a comprehensive and expert-curated cultivation media database, which comprises recipes, instructions and molecular compositions of >3200 standardized cultivation media for >40 000 microbial strains from all domains of life. MediaDive is designed to enable broad range applications from every-day-use in research and diagnostic laboratories to knowledge-driven support of new media design and artificial intelligence-driven data mining. It offers a number of intuitive search functions and comparison tools, for example to identify media for related taxonomic groups and to integrate strain-specific modifications. Besides classical PDF archiving and printing, the state-of-the-art website allows paperless use of media recipes on mobile devices for convenient wet-lab use. In addition, data can be retrieved using a RESTful web service for large-scale data analyses. An internal editor interface ensures continuous extension and curation of media by cultivation experts from the Leibniz Institute DSMZ, which is interlinked with the growing microbial collections at DSMZ. External user engagement is covered by a dedicated media builder tool. The standardized and programmatically accessible data will foster new approaches for the design of cultivation media to target the vast majority of uncultured microorganisms.


Assuntos
Meios de Cultura , Bases de Dados Factuais , Inteligência Artificial , Mineração de Dados , Meios de Cultura/química
5.
Front Microbiol ; 12: 704168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220789

RESUMO

Chloracidobacterium is the first and until now the sole genus in the phylum Acidobacteriota (formerly Acidobacteria) whose members perform chlorophyll-dependent phototrophy (i.e., chlorophototrophy). An axenic isolate of Chloracidobacterium thermophilum (strain B T ) was previously obtained by using the inferred genome sequence from an enrichment culture and diel metatranscriptomic profiling analyses in situ to direct adjustments to the growth medium and incubation conditions, and thereby a defined growth medium for Chloracidobacterium thermophilum was developed. These advances allowed eight additional strains of Chloracidobacterium spp. to be isolated from microbial mat samples collected from Mushroom Spring, Yellowstone National Park, United States, at temperatures of 41, 52, and 60°C; an axenic strain was also isolated from Rupite hot spring in Bulgaria. All isolates are obligately photoheterotrophic, microaerophilic, non-motile, thermophilic, rod-shaped bacteria. Chloracidobacterium spp. synthesize multiple types of (bacterio-)chlorophylls and have type-1 reaction centers like those of green sulfur bacteria. Light harvesting is accomplished by the bacteriochlorophyll a-binding, Fenna-Matthews-Olson protein and chlorosomes containing bacteriochlorophyll c. Their genomes are approximately 3.7 Mbp in size and comprise two circular chromosomes with sizes of approximately 2.7 Mbp and 1.0 Mbp. Comparative genomic studies and phenotypic properties indicate that the nine isolates represent three species within the genus Chloracidobacterium. In addition to C. thermophilum, the microbial mats at Mushroom Spring contain a second species, tentatively named Chloracidobacterium aggregatum, which grows as aggregates in liquid cultures. The Bulgarian isolate, tentatively named Chloracidobacterium validum, will be proposed as the type species of the genus, Chloracidobacterium. Additionally, Chloracidobacterium will be proposed as the type genus of a new family, Chloracidobacteriaceae, within the order Blastocatellales, the class Blastocatellia, and the phylum Acidobacteriota.

6.
Nat Cancer ; 1: 1027-1031, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327335

RESUMO

Recent advances in cancer neuroscience necessitate the systematic analysis of neural influences in cancer as potential therapeutic targets in oncology. Here, we outline recommendations for future preclinical and translational research in this field.


Assuntos
Neoplasias , Neurociências , Previsões , Humanos , Neoplasias/terapia , Pesquisa Translacional Biomédica
7.
Microorganisms ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801086

RESUMO

Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400-800 µmol L-1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.

8.
Cancer Discov ; 11(3): 638-659, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060108

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Metilação de DNA , Interferons/metabolismo , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ilhas de CpG , Progressão da Doença , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Reprodutibilidade dos Testes , Transdução de Sinais , Transcriptoma , Microambiente Tumoral/genética
9.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303662

RESUMO

We report here the metagenome-assembled draft genome of an uncultured filamentous anoxygenic phototroph of the phylum Chloroflexota (formerly Chloroflexi), "Candidatus Roseilinea sp. strain NK_OTU-006," recovered from hot spring-associated microbial mats. The 3.6-Mb genome is estimated to be 94% complete and comprises 117 contigs encoding 3,203 predicted genes, including a full-length rRNA operon.

10.
Int J Syst Evol Microbiol ; 70(11): 5701-5710, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32931408

RESUMO

A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7T was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40-56 °C) and pH 7.2 (range, pH 7-8). Major fatty acids were C16 : 0 (46.8 %), C16 : 1 ω7c (19.9 %), C18 : 1 ω7c (21.1 %), C14 : 0 (4.6 %) and C18 : 0 (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to Thermochromatium tepidum with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7T with a long-branching phylogenetic position within the Chromatiaceae next to Thermochromatium tepidum. The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7T is a novel genus within the Chromatiaceae. The proposed genus name of the second truly thermophilic purple sulphur bacterium is Caldichromatium gen. nov. with the type species Caldichromatium japonicum sp. nov. (DSM 110881=JCM 39101).


Assuntos
Chromatiaceae/classificação , Fontes Termais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Chromatiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfetos , Enxofre , Tiossulfatos , Ubiquinona/química
11.
Cancer Cell ; 38(1): 11-14, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32531270

RESUMO

Neuro-glial activation is a recently identified hallmark of growing cancers. Targeting tumor hyperinnervation in preclinical and small clinical trials has yielded promising antitumor effects, highlighting the need of systematic analysis of neural influences in cancer (NIC). Here, we outline the strategies translating these findings from bench to the clinic.


Assuntos
Neoplasias/fisiopatologia , Neoplasias/terapia , Sistema Nervoso/fisiopatologia , Dor do Câncer/diagnóstico , Dor do Câncer/fisiopatologia , Dor do Câncer/terapia , Denervação/métodos , Humanos , Neoplasias/diagnóstico
12.
Microbes Environ ; 34(4): 374-387, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31685759

RESUMO

Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing "Ca. Thermonerobacter sp.", which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph "Ca. Chloroanaerofilum sp." and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.


Assuntos
Bactérias/classificação , Biodiversidade , Fontes Termais/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bacterioclorofilas/metabolismo , DNA Bacteriano/genética , Fontes Termais/química , Japão , Luz , Microbiota/genética , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese , Processos Fototróficos , Ficobiliproteínas/metabolismo , Filogenia , RNA Ribossômico 16S/genética
13.
Antonie Van Leeuwenhoek ; 112(8): 1169-1175, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30863942

RESUMO

The genus Tabrizicola with its type species and strain Tabrizicola aquatica RCRI19T was previously described as a purely chemotrophic genus of Gram-negative, aerobic, non-motile and rod-shaped bacteria. With the present study, we expand the description of the metabolic capabilities of this genus and the T. aquatica type strain to include chlorophyll-dependent phototrophy. Our results confirmed that T. aquatica, does not grow under anaerobic photoautotrophic or photoheterotrophic conditions. However, the presence of the photosynthesis-related genes pufL and pufM could be demonstrated in the genomes of several Tabrizicola strains. Additionally, photosynthetic pigments (bacteriochlorophyll a) were formed under aerobic, heterotrophic and low light conditions in T. aquatica strain RCRI19T. Furthermore, all the genes necessary for a fully operational photosynthetic apparatus and bacteriochlorophyll a are present in the T. aquatica type strain genome. Therefore, we suggest categorising T. aquatica RCRI19T, isolated from freshwater environment of Qurugöl Lake, as an aerobic anoxygenic phototrophic (AAP) bacterium.


Assuntos
Água Doce/microbiologia , Processos Fototróficos , Rhodobacteraceae/classificação , Rhodobacteraceae/fisiologia , Aerobiose , Animais , Clorofila/análise , Luz , Redes e Vias Metabólicas/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação
14.
Microbes Environ ; 33(4): 357-365, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30404970

RESUMO

Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70-86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.


Assuntos
Biodiversidade , Variação Genética , Fontes Termais/microbiologia , Microbiota , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredutases/genética , DNA Bacteriano/genética , Japão , Microbiota/genética , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Microbes Environ ; 33(4): 394-401, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30473565

RESUMO

The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Fontes Termais/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Oxirredutases/metabolismo , Bactérias/classificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Japão , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Oxirredução , Oxirredutases/genética , Oxigênio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Annu Rev Plant Biol ; 69: 21-49, 2018 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-29505738

RESUMO

Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.


Assuntos
Bactérias/metabolismo , Genômica , Processos Fototróficos , Nitrogênio , Oxigênio/metabolismo , Filogenia
17.
PLoS One ; 13(1): e0191650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29381713

RESUMO

Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled environmental conditions for the analysis of natural microbial communities, which proved to be a powerful tool to study interspecies relationships in the microbiome.


Assuntos
Biodiversidade , Fontes Termais/microbiologia , Luz , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
18.
Microbes Environ ; 33(1): 10-18, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29367473

RESUMO

The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.


Assuntos
Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Consórcios Microbianos , Fixação de Nitrogênio , Sulfatos/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Crescimento Quimioautotrófico , Ecossistema , Fontes Termais/microbiologia , Japão , Nitrogenase/metabolismo , Oxirredução
19.
Front Microbiol ; 9: 3159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687241

RESUMO

In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named "Candidatus Thermonerobacter thiotrophicus," which is affiliated with the Bacteroides/Ignavibacteria/Chlorobi and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla. However, based on highly diverse environmental dsrAB sequences, a variety of uncultivated and unidentified SRM must exist. The recent development of high-throughput sequencing methods allows the phylogenetic identification of some of these uncultured SRM. In this study, we identified a novel putative SRM inhabiting hot spring microbial mats that is a member of the OPB56 clade ("Ca. Kapabacteria") within the Bacteroidetes/Chlorobi superphylum. Partial genomes for this new organism were retrieved from metagenomes from three different hot springs in Yellowstone National Park, United States, and Japan. Supporting the prediction of a sulfate-reducing metabolism for this organism during period of anoxia, diel metatranscriptomic analyses indicate highest relative transcript levels in situ for all DSR-related genes at night. The presence of terminal oxidases, which are transcribed during the day, further suggests that these organisms might also perform aerobic respiration. The relative phylogenetic proximity to the sulfur-oxidizing, chlorophototrophic Chlorobi further raises new questions about the evolution of dissimilatory sulfur metabolism.

20.
Genome Announc ; 5(26)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663291

RESUMO

The draft genome of the Gram-positive spore-forming Anoxybacillus ayderensis strain MT-Cab (Firmicutes), isolated from an enrichment culture of Chloracidobacterium thermophilum, was sequenced and comprises 2,577,015 bp in 92 contigs. The draft genome is predicted to consist of 2,699 protein-coding genes, 73 tRNA-coding genes, and an estimated 8 rRNA operons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...